
Embedded Systems Design and Modeling 1

Embedded Systems 
Design and Modeling

Chapter 12
Scheduling



Embedded Systems Design and Modeling

Definitions
 Scheduling:

 The process of determining which 
job/task/thread/process to execute

 Considerations:
 Preemptive vs. non-preemptive scheduling
 Periodic vs. aperiodic tasks
 Fixed priority vs. dynamic priority
 Priority inversion anomalies
 Other scheduling anomalies

2



Embedded Systems Design and Modeling

Preemptive Scheduling
 Non-preemptive:

 Once a task is started, it runs until it ends or has to do some I/O
 Preemptive:

 A task may be stopped to run another
 Assumes all threads have set priorities

 either statically assigned (constant for the duration of the thread)
 or dynamically assigned (can vary)

 Assumes that the kernel keeps track of which threads are ready to 
execute

 At any instant, the enabled thread with the highest priority is 
executing

 Whenever any thread changes priority or its status, the kernel can 
dispatch a new thread

 Incurs overhead and implementation complexity
 Has better schedulability and easier analysis

 Which one? Non-preemptive has very restrictive constraints
3



Embedded Systems Design and Modeling

Non-Preemptive Constraint
 Consider N tasks, with task tj getting 

ready every pj, and needs ej time during 
interval pj

 Then pj has to be >= e1 + e2 + … + eN

 In other words, period of every thread >= 
sum of computation times!

 Not practical, may have to switch to 
preemptive solutions

4



Embedded Systems Design and Modeling

Multitasking Options
1. Cyclic executive

 Similar to TDMA (Time Division Multiple Access) 
scheduling

 Also called “static table-driven scheduling” or “timeline 
scheduling”

 Requires static schedulability analysis
 The resulting schedule or table is used at run time

2. Event-driven non-preemptive
 Tasks are represented by functions that are handlers for 

events
 Next event processed after function for previous event 

finishes

5



Embedded Systems Design and Modeling

Multitasking Options (Cont’d)
3. Thread-based

 Supports both static and dynamic priority
 Supports preemptive and non-preemptive
 Requires static schedulability analysis
 No explicit schedule constructed: at run time 

tasks are executed “highest priority first”
 Flavors

 Rate Monotonic (RM)
 Deadline Monotonic (DM)
 Earliest Deadline First (EDF)
 etc.

6



Embedded Systems Design and Modeling

Comparison Metrics
 Need metrics to compare performance
 Static case:

1. First and foremost, off-line schedule has to 
meet all the deadlines!

2. Secondary metric(s):
 Maximize average earliness
 Minimize average lateness

 Dynamic case:
 No prior guarantee that deadline would be met
 Metric: maximize number of arrivals that meet 

the deadline
7



Embedded Systems Design and Modeling

Definitions
 Feasible schedule:

 For all tasks fi ≤ di

 Lateness:
 For each task: fi – di

 For a feasible schedule:
 For all tasks lateness ≤ 0

 Earliness:
 For each task: di – fi

 Makespan:
 For each task: max fi – max ri

8



Embedded Systems Design and Modeling

Thread-Based Scheduling
 Definition: Set of rules to determine the specific 

thread to be executed at a particular moment
 One possibility: Preemptive & priority driven

 Tasks are assigned priorities
 Statically or dynamically
 At any instant, the highest priority task is running
 Whenever there is a request for a task that is of higher 

priority than the one currently being executed, the 
running task is interrupted, and the newly requested 
task is started

 Scheduling algorithm = method to assign 
priorities

9



Embedded Systems Design and Modeling

Task Priority Assignment Options
 Static or fixed approach

 Priorities are assigned to tasks once for all
 Dynamic approach

 Priorities of tasks may change from request to 
request

 Mixed approach
 Some tasks have fixed priorities, others don’t

10



Embedded Systems Design and Modeling

Assumptions
 Run-time for each task is constant for that task, 

and does not vary with time and input data
 Each task must finish before the next request for it
 Tasks are independent (requests for a certain task 

does not depend on the initiation or completion of 
requests for other tasks, no data dependency)

 No task can implicitly suspend itself, e.g., for I/O
 All tasks are fully preemptible
 All kernel overheads are zero (context switching is 

instantaneous)

11



Embedded Systems Design and Modeling

Rate Monotonic Definitions
 Consider n independent tasks: t1, t2, …, tn
 Assume request periods are p1, p2, ..., pn

 Request rate of ti is 1/pi
 ti,j indicates the j-th instance of the i-th task

 Run-times are e1, e2, ..., en

12



Embedded Systems Design and Modeling

Rate Monotonic
 Assign priorities according to request rates, 

independent of run times
 Higher priorities for tasks with higher request rates
 For tasks i and j, if pi < pj, Priority(i) > Priority(j)

 Called Rate Monotonic (RM) priority assignment
 It is optimal among static priority-based schemes
 Theorem 1: No other fixed priority assignment 

can schedule a task set if RM priority assignment 
can’t schedule it, i.e., if a feasible priority 
assignment exists, then RM priority assignment is 
feasible

13



Embedded Systems Design and Modeling

Rate Monotonic Example 1

14

Not feasible with non-preemptive scheduler!



Embedded Systems Design and Modeling

Rate Monotonic Example 2

15

A preemptive schedule with higher priority for t1 
is feasible



Embedded Systems Design and Modeling

Rate Monotonic (worst case 
response time)

16

• Worst case response 
time is when the start 
times of tasks line up

• Reason: maximum 
number of context 
switching happens 
this way



Embedded Systems Design and Modeling

Non-Rate Monotonic

17

If priority given to t2 (non-RM), feasible iff e1 + e2 <= p1



Embedded Systems Design and Modeling

Same Example with Rate Monotonic

18

If priority given to t1 (RM), e1 + e2 <= p1 is sufficient but 
not necessary



Embedded Systems Design and Modeling

Processor Utilization Factor
 Portion of processor time spent in executing the 

task set
 Provides a measure of computational load on CPU 

due to a periodic task set
 For n tasks, t1, t2, …, tn the utilization factor U is 

U = e1/p1 + e2/p2 + … + en/pn
 A task set is definitely not schedulable if its 

processor utilization factor is greater than 1
 For a task set, U can be improved by increasing 

ei’s or decreasing pi’s as long as tasks continue 
to satisfy their deadlines

19



Embedded Systems Design and Modeling

Utilization Factor Analysis
 There exists a minimum value of U below 

which task set is schedulable and above 
which it is not
 This depends on scheduling algorithm and the 

task set
 Corresponding to a priority assignment, a 

set of tasks fully utilizes a processor if:
 the priority assignment is feasible for the set
 and, if an increase in the run time of any task 

in the set will make the priority assignment 
infeasible

20



Embedded Systems Design and Modeling

Utilization Factor Analysis (Cont’d)
 The U at which this happens is called the 

upper bound for a task set
 The least upper bound of U is the 

minimum of the U’s over all task sets that 
fully utilize the processor
 For all task sets whose U is below this bound, 

there exists a fixed priority assignment which 
is feasible

 U above this bound can be achieved only if the 
task periods pi’s are suitably related

21



Embedded Systems Design and Modeling

Utilization Factor Analysis (Cont’d)
 The least upper bound of U is an 

important characteristic of a scheduling 
algorithm as it allows easy verification of 
schedulability of a task set
 Below this bound, a task set is definitely 

schedulable
 Above this bound it may be schedulable

22



Embedded Systems Design and Modeling

Upper Bound Theorem
 Theorem 2: For a set of n tasks with fixed priority 

assignment, the least upper bound to processor 
utilization factor is U=n(21/n-1)

 Or, equivalently, a set of n periodic tasks 
scheduled by RM algorithm will always meet their 
deadlines for all task start times if
 e1/p1 + e2/p2 + … + en/pn <= n(21/n-1)

 For large n, U = ln2 = 0.69 which is too low
 But, note that this is just the least upper bound

 Task set with larger U may still be schedulable
 If U <= n(21/n-1) then it is RM schedulable
 Otherwise, use other methods!

23



Embedded Systems Design and Modeling

Example 1
 Task 1 : e1 =20; p1 =100
 Task 2 : e2 =30; p2 =145
 Is this task set schedulable?
 U = 20/100 + 30/145 = 0.41 <= 2(21/2-1) 

= 0.828
 Yes!

24



Embedded Systems Design and Modeling

Example 2
 Task 1 : e1 =20; p1 =100
 Task 2 : e2 =30; p2 =145
 Task 3 : e3 =68; p3 =150
 Is this task set schedulable?
 U = 20/100 + 30/145 + 68/150 = 0.86 > 

3(21/3-1) = 0.779
 Inconclusive! Need to try other ways.

25



Embedded Systems Design and Modeling

Example 2 (Cont’d)
 Consider the critical instant of t3, the 

lowest priority task
 t1 and t2 must execute at least once before t3 

can begin executing
 Therefore, completion time of t3 is e1+e2+e3 

= 20+68+30 = 118
 However, t1 is initiated one additional time in 

(0,118)
 Taking this into consideration, completion time 

of t3 = 2*e1+e2+e3 = 2*20+30+68 = 138
 138<p3=150 so the task set is schedulable

26



Embedded Systems Design and Modeling

Dynamic Priority Scheduling 
 Definition: priorities are assigned to 

individual instances of a task
 One of the most common algorithms of 

this class is EDF, or Earliest Deadline First
 Task priorities are inversely proportional to 

absolute deadlines of active jobs
 Optimal among all preemptive dynamic 

scheduling algorithms without precedences
 Can be used for periodic or aperiodic

 If there exists a feasible schedule, then 
schedule given by EDF is also feasible 27



Embedded Systems Design and Modeling

Other Dynamic Schedulings
 Latest Deadline First (LDF):

 Schedules the last task first
 Minimizes the maximum lateness
 Optimal for cases with data dependency
 But doesn’t support task arrivals

 EDF with precedence (EDF*)
 Minimizes the maximum lateness and supports 

task arrivals
 Considers deadline of a task and its successors
 Modified deadline:

28



Embedded Systems Design and Modeling

Example:
Comparison of EDF, LDF, EDF*

29

Assumption:
All execution 
times are 1 Note: task 4 

misses its 
deadline in EDF!


