Embedded Systems
Design and Modeling

Embedded Systems Design and Modeling

Definitions

O Scheduling:
= The process of determining which
Jjob/task/thread/process to execute
O Considerations:
= Preemptive vs. non-preemptive scheduling
= Periodic vs. aperiodic tasks
= Fixed priority vs. dynamic priority
= Priority inversion anomalies
= Other scheduling anomalies

Embedded Systems Design and Modeling

Preemptive Scheduling

O Non-preemptive:
m Once a task is started, it runs until it ends or has to do some 1/0
O Preemptive:

= A task may be stopped to run another

= Assumes all threads have set priorities
either statically assigned (constant for the duration of the thread)
or dynamically assigned (can vary)

= Assumes that the kernel keeps track of which threads are ready to
execute

= At any instant, the enabled thread with the highest priority is
executing

= Whenever any thread changes priority or its status, the kernel can
dispatch a new thread

= Incurs overhead and implementation complexity
= Has better schedulability and easier analysis

O Which one? Non-preemptive has very restrictive constraints

3

Embedded Systems Design and Modeling

Non-Preemptive Constraint

0 Consider N tasks, with task tj getting
ready every pj, and needs ej time during
Interval pj

0 Then pj has to be >= el + e2 + ... + enN

O In other words, period of every thread >=
sum of computation times!

O Not practical, may have to switch to
preemptive solutions

Embedded Systems Design and Modeling

Multitasking Options

1. Cyclic executive

= Similar to TDMA (Time Division Multiple Access)
scheduling

= Also called “static table-driven scheduling” or “timeline
scheduling”

= Requires static schedulability analysis
= The resulting schedule or table is used at run time

2. Event-driven non-preemptive

= Tasks are represented by functions that are handlers for
events

= Next event processed after function for previous event
finishes

Embedded Systems Design and Modeling

Multitasking Options (Cont’d)

3. Thread-based

= Supports both static and dynamic priority
= Supports preemptive and non-preemptive
= Requires static schedulability analysis

= No explicit schedule constructed: at run time
tasks are executed “highest priority first”

= Flavors
Rate Monotonic (RM)
Deadline Monotonic (DM)
Earliest Deadline First (EDF)
etc.

Embedded Systems Design and Modeling

Comparison Metrics

O Need metrics to compare performance

O Static case:

1. First and foremost, off-line schedule has to
meet all the deadlines!

2. Secondary metric(s):
Maximize average earliness
Minimize average lateness

0 Dynamic case:
= No prior guarantee that deadline would be met

m Metric: maximize number of arrivals that meet

the deadline
Embedded Systems Design and Modeling

Definitions

D FeaSibIe SCthUle: .. r ?sponsetime 0; R
= For all tasks f, < d. e
taSk < (.....) <W>
O Lateness: execution T
l ' A >
= For eaCh taSk: fi — di = ‘ S,A o N f, d,-A time
m For a feasible schedule: ol ol S5 SI 2l g
£ E 5 5 £ €
For all tasks lateness <0 S5 B Bl el3
o Earliness: 8w & & &T
= For each task: d, — f;
0 Makespan:
= For each task: max f; — max r;
8

Embedded Systems Design and Modeling

Thread-Based Scheduling

O Definition: Set of rules to determine the specific
thread to be executed at a particular moment

O One possibility: Preemptive & priority driven
= Tasks are assigned priorities
Statically or dynamically

H
= At any instant, the highest priority task is running
H

Whenever there is a request for a task that is of higher
priority than the one currently being executed, the
running task is interrupted, and the newly requested
task is started

O Scheduling algorithm = method to assign

priorities

Embedded Systems Design and Modeling

Task Priority Assignment Options

O Static or fixed approach
= Priorities are assigned to tasks once for all

0 Dynamic approach

= Priorities of tasks may change from request to
request

O Mixed approach
= Some tasks have fixed priorities, others don’t

Embedded Systems Design and Modeling

10

Assumptions

O

O
O

O

Run-time for each task is constant for that task,
and does not vary with time and input data

Each task must finish before the next request for it

Tasks are independent (requests for a certain task
does not depend on the initiation or completion of
requests for other tasks, no data dependency)

No task can implicitly suspend itself, e.g., for 1I/0
All tasks are fully preemptible

All kernel overheads are zero (context switching is
Instantaneous)

11

Embedded Systems Design and Modeling

Rate Monotonic Definitions

O Consider n independent tasks: t1, t2, ..., tn

O Assume request periods are pl, p2, ..., pn
= Request rate of ti is 1/pi
= ti,J indicates the j-th instance of the i-th task

0 Run-times are el, e2, ..., en

Embedded Systems Design and Modeling

12

Rate Monotonic

O Assign priorities according to request rates,

Independent of run times
= Higher priorities for tasks with higher request rates
= For tasks i and j, if pi < pj, Priority(i) > Priority(j)

O Called Rate Monotonic (RM) priority assignment
O It is optimal among static priority-based schemes

O Theorem 1: No other fixed priority assignment
can schedule a task set if RM priority assignment
can’t schedule it, i.e., If a feasible priority
assignment exists, then RM priority assignment is
feasible

13

Embedded Systems Design and Modeling

Rate Monotonic Example 1
P

Not feasible with non-preemptive scheduler!

Embedded Systems Design and Modeling

14

Rate Monotonic Example 2

) P ;
«f B B B B B |
’Cz|
))
______),'_I_(__'_; —_— \preemptEd
execution time ¢,
< >

P>

A preemptive schedule with higher priority for t1
Is feasible

15

Embedded Systems Design and Modeling

Rate Monotonic (worst case
response time)

T
* \Worst case response 1 I I I
time is when the start 2o
times of tasks line up

e Reason: maximum Hl I I I |

number of context Ts
switching happens

this way u I I |

Embedded Systems Design and Mode|

worst case response time: 0,

16

Non-Rate Monotonic

P>

If priority given to t2 (non-RM), feasible iff el + e2 <= p1

17

Embedded Systems Design and Modeling

Same Example with Rate Monotonic

<p1>
€
x4
] 8 1 &1 1 B
2
=)
£ >

P>

If priority given to t1 (RM), el + e2 <= pl is sufficient but
not necessary

18

Embedded Systems Design and Modeling

Processor Utilization Factor

O Portion of processor time spent in executing the
task set

O Provides a measure of computational load on CPU
due to a periodic task set

o For n tasks, tl1, t2, ..., tn the utilization factor U is
U=el/pl + e2/p2 + ... + en/pn

O A task set is definitely not schedulable if its
processor utilization factor is greater than 1

O For a task set, U can be improved by increasing
el’s or decreasing pi’s as long as tasks continue
to satisfy their deadlines

19

Embedded Systems Design and Modeling

Utilization Factor Analysis

0O There exists a minimum value of U below
which task set Is schedulable and above
which 1t 1s not

= This depends on scheduling algorithm and the
task set
O Corresponding to a priority assignment, a
set of tasks fully utilizes a processor If:
= the priority assignment is feasible for the set

= and, iIf an increase In the run time of any task
In the set will make the priority assignment
Infeasible
Embedded Systems Design and Modeling

20

Utilization Factor Analysis (Cont’d)

o The U at which this happens is called the
upper bound for a task set

O The least upper bound of U iIs the
minimum of the U’s over all task sets that
fully utilize the processor

m For all task sets whose U is below this bound,
there exists a fixed priority assignment which
IS feasible

= U above this bound can be achieved only if the
task periods pi’'s are suitably related

21

Embedded Systems Design and Modeling

Utilization Factor Analysis (Cont’d)

O The least upper bound of U Is an
Important characteristic of a scheduling
algorithm as it allows easy verification of
schedulability of a task set

= Below this bound, a task set is definitely
schedulable
= Above this bound it may be schedulable

22

Embedded Systems Design and Modeling

Upper Bound Theorem

O Theorem 2: For a set of n tasks with fixed priority
assignment, the least upper bound to processor
utilization factor is U=n(2%"-1)

o Or, equivalently, a set of n periodic tasks
scheduled by RM algorithm will always meet their
deadlines for all task start times if

= el/pl + e2/p2 + ... + en/pn <= n(2V/"-1)

O For large n, U = In2 = 0.69 which is too low

O But, note that this is just the least upper bound
= Task set with larger U may still be schedulable
= If U <= n(2¥"-1) then it is RM schedulable
= Otherwise, use other methods!

23

Embedded Systems Design and Modeling

Example 1

OoTask 1 : el =20; pl =100
O Task 2 . e2 =30; p2 =145
O Is this task set schedulable?

o U = 20/100 + 30/145 = 0.41 <= 2(21/2-1)
= 0.828

O Yes!

24

Embedded Systems Design and Modeling

Example 2

OTask 1 : el =20; pl =100
O Task 2 : e2 =30; p2 =145
O Task 3 : e3 =68; p3 =150
O Is this task set schedulable?

oU = 20/100 + 30/145 + 68/150 = 0.86 >
3(21/3-1) = 0.779
O Inconclusive! Need to try other ways.

Embedded Systems Design and Modeling

25

Example 2 (Cont’d)

O Consider the critical instant of t3, the
lowest priority task

m t1 and t2 must execute at least once before t3
can begin executing

= Therefore, completion time of t3 is el+e2+e3
= 20+68+30 = 118

= However, tl is initiated one additional time In
(0,118)

= Taking this into consideration, completion time
of t3 = 2*el+e2+e3 = 2*20+30+68 = 138

m 138<p3=150 so the task set is schedulable

26

Embedded Systems Design and Modeling

Dynamic Priority Scheduling

O Definition: priorities are assigned to
Individual instances of a task

0 One of the most common algorithms of
this class i1s EDF, or Earliest Deadline First

= Task priorities are inversely proportional to
absolute deadlines of active jobs

= Optimal among all preemptive dynamic
scheduling algorithms without precedences

= Can be used for periodic or aperiodic

O If there exists a feasible schedule, then

schedule given by EDF is also feasible
Embedded Systems Design and Modeling

Other Dynamic Schedulings

O Latest Deadline First (LDF):

= Schedules the last task first

= Minimizes the maximum lateness

= Optimal for cases with data dependency
= But doesn’t support task arrivals

O EDF with precedence (EDF*)

= Minimizes the maximum lateness and supports
task arrivals

m Considers deadline of a task and Its successors

= Modified deadline: 4 — min(d,. _nﬁ}} (d — e5))
JELI)

Embedded Systems Design and Modeling

Example:
Comparison of EDF, LDF, EDF*

d=3
Assumption: d=5 (2)
All execution
| d= s
times are 1 s Note: task 4
d=2 @)\‘ misses its
' ' I
d=14 () deadline in EDF!

EDF 1 3 P 4 3 6

LDF 1 2 4 3 3 6

EDF* | 1 2 4 3 5 6

0 2 q ®
d; = min(d;, min [e'i;i — €5))

JeINi) 29
Embedded Crvictome
=1, dy=2 dy=4, d;,=3, d=5 d, =6

