
Embedded Systems Design and Modeling 1

Embedded Systems 
Design and Modeling

Chapter 12
Scheduling



Embedded Systems Design and Modeling

Definitions
 Scheduling:

 The process of determining which 
job/task/thread/process to execute

 Considerations:
 Preemptive vs. non-preemptive scheduling
 Periodic vs. aperiodic tasks
 Fixed priority vs. dynamic priority
 Priority inversion anomalies
 Other scheduling anomalies

2



Embedded Systems Design and Modeling

Preemptive Scheduling
 Non-preemptive:

 Once a task is started, it runs until it ends or has to do some I/O
 Preemptive:

 A task may be stopped to run another
 Assumes all threads have set priorities

 either statically assigned (constant for the duration of the thread)
 or dynamically assigned (can vary)

 Assumes that the kernel keeps track of which threads are ready to 
execute

 At any instant, the enabled thread with the highest priority is 
executing

 Whenever any thread changes priority or its status, the kernel can 
dispatch a new thread

 Incurs overhead and implementation complexity
 Has better schedulability and easier analysis

 Which one? Non-preemptive has very restrictive constraints
3



Embedded Systems Design and Modeling

Non-Preemptive Constraint
 Consider N tasks, with task tj getting 

ready every pj, and needs ej time during 
interval pj

 Then pj has to be >= e1 + e2 + … + eN

 In other words, period of every thread >= 
sum of computation times!

 Not practical, may have to switch to 
preemptive solutions

4



Embedded Systems Design and Modeling

Multitasking Options
1. Cyclic executive

 Similar to TDMA (Time Division Multiple Access) 
scheduling

 Also called “static table-driven scheduling” or “timeline 
scheduling”

 Requires static schedulability analysis
 The resulting schedule or table is used at run time

2. Event-driven non-preemptive
 Tasks are represented by functions that are handlers for 

events
 Next event processed after function for previous event 

finishes

5



Embedded Systems Design and Modeling

Multitasking Options (Cont’d)
3. Thread-based

 Supports both static and dynamic priority
 Supports preemptive and non-preemptive
 Requires static schedulability analysis
 No explicit schedule constructed: at run time 

tasks are executed “highest priority first”
 Flavors

 Rate Monotonic (RM)
 Deadline Monotonic (DM)
 Earliest Deadline First (EDF)
 etc.

6



Embedded Systems Design and Modeling

Comparison Metrics
 Need metrics to compare performance
 Static case:

1. First and foremost, off-line schedule has to 
meet all the deadlines!

2. Secondary metric(s):
 Maximize average earliness
 Minimize average lateness

 Dynamic case:
 No prior guarantee that deadline would be met
 Metric: maximize number of arrivals that meet 

the deadline
7



Embedded Systems Design and Modeling

Definitions
 Feasible schedule:

 For all tasks fi ≤ di

 Lateness:
 For each task: fi – di

 For a feasible schedule:
 For all tasks lateness ≤ 0

 Earliness:
 For each task: di – fi

 Makespan:
 For each task: max fi – max ri

8



Embedded Systems Design and Modeling

Thread-Based Scheduling
 Definition: Set of rules to determine the specific 

thread to be executed at a particular moment
 One possibility: Preemptive & priority driven

 Tasks are assigned priorities
 Statically or dynamically
 At any instant, the highest priority task is running
 Whenever there is a request for a task that is of higher 

priority than the one currently being executed, the 
running task is interrupted, and the newly requested 
task is started

 Scheduling algorithm = method to assign 
priorities

9



Embedded Systems Design and Modeling

Task Priority Assignment Options
 Static or fixed approach

 Priorities are assigned to tasks once for all
 Dynamic approach

 Priorities of tasks may change from request to 
request

 Mixed approach
 Some tasks have fixed priorities, others don’t

10



Embedded Systems Design and Modeling

Assumptions
 Run-time for each task is constant for that task, 

and does not vary with time and input data
 Each task must finish before the next request for it
 Tasks are independent (requests for a certain task 

does not depend on the initiation or completion of 
requests for other tasks, no data dependency)

 No task can implicitly suspend itself, e.g., for I/O
 All tasks are fully preemptible
 All kernel overheads are zero (context switching is 

instantaneous)

11



Embedded Systems Design and Modeling

Rate Monotonic Definitions
 Consider n independent tasks: t1, t2, …, tn
 Assume request periods are p1, p2, ..., pn

 Request rate of ti is 1/pi
 ti,j indicates the j-th instance of the i-th task

 Run-times are e1, e2, ..., en

12



Embedded Systems Design and Modeling

Rate Monotonic
 Assign priorities according to request rates, 

independent of run times
 Higher priorities for tasks with higher request rates
 For tasks i and j, if pi < pj, Priority(i) > Priority(j)

 Called Rate Monotonic (RM) priority assignment
 It is optimal among static priority-based schemes
 Theorem 1: No other fixed priority assignment 

can schedule a task set if RM priority assignment 
can’t schedule it, i.e., if a feasible priority 
assignment exists, then RM priority assignment is 
feasible

13



Embedded Systems Design and Modeling

Rate Monotonic Example 1

14

Not feasible with non-preemptive scheduler!



Embedded Systems Design and Modeling

Rate Monotonic Example 2

15

A preemptive schedule with higher priority for t1 
is feasible



Embedded Systems Design and Modeling

Rate Monotonic (worst case 
response time)

16

• Worst case response 
time is when the start 
times of tasks line up

• Reason: maximum 
number of context 
switching happens 
this way



Embedded Systems Design and Modeling

Non-Rate Monotonic

17

If priority given to t2 (non-RM), feasible iff e1 + e2 <= p1



Embedded Systems Design and Modeling

Same Example with Rate Monotonic

18

If priority given to t1 (RM), e1 + e2 <= p1 is sufficient but 
not necessary



Embedded Systems Design and Modeling

Processor Utilization Factor
 Portion of processor time spent in executing the 

task set
 Provides a measure of computational load on CPU 

due to a periodic task set
 For n tasks, t1, t2, …, tn the utilization factor U is 

U = e1/p1 + e2/p2 + … + en/pn
 A task set is definitely not schedulable if its 

processor utilization factor is greater than 1
 For a task set, U can be improved by increasing 

ei’s or decreasing pi’s as long as tasks continue 
to satisfy their deadlines

19



Embedded Systems Design and Modeling

Utilization Factor Analysis
 There exists a minimum value of U below 

which task set is schedulable and above 
which it is not
 This depends on scheduling algorithm and the 

task set
 Corresponding to a priority assignment, a 

set of tasks fully utilizes a processor if:
 the priority assignment is feasible for the set
 and, if an increase in the run time of any task 

in the set will make the priority assignment 
infeasible

20



Embedded Systems Design and Modeling

Utilization Factor Analysis (Cont’d)
 The U at which this happens is called the 

upper bound for a task set
 The least upper bound of U is the 

minimum of the U’s over all task sets that 
fully utilize the processor
 For all task sets whose U is below this bound, 

there exists a fixed priority assignment which 
is feasible

 U above this bound can be achieved only if the 
task periods pi’s are suitably related

21



Embedded Systems Design and Modeling

Utilization Factor Analysis (Cont’d)
 The least upper bound of U is an 

important characteristic of a scheduling 
algorithm as it allows easy verification of 
schedulability of a task set
 Below this bound, a task set is definitely 

schedulable
 Above this bound it may be schedulable

22



Embedded Systems Design and Modeling

Upper Bound Theorem
 Theorem 2: For a set of n tasks with fixed priority 

assignment, the least upper bound to processor 
utilization factor is U=n(21/n-1)

 Or, equivalently, a set of n periodic tasks 
scheduled by RM algorithm will always meet their 
deadlines for all task start times if
 e1/p1 + e2/p2 + … + en/pn <= n(21/n-1)

 For large n, U = ln2 = 0.69 which is too low
 But, note that this is just the least upper bound

 Task set with larger U may still be schedulable
 If U <= n(21/n-1) then it is RM schedulable
 Otherwise, use other methods!

23



Embedded Systems Design and Modeling

Example 1
 Task 1 : e1 =20; p1 =100
 Task 2 : e2 =30; p2 =145
 Is this task set schedulable?
 U = 20/100 + 30/145 = 0.41 <= 2(21/2-1) 

= 0.828
 Yes!

24



Embedded Systems Design and Modeling

Example 2
 Task 1 : e1 =20; p1 =100
 Task 2 : e2 =30; p2 =145
 Task 3 : e3 =68; p3 =150
 Is this task set schedulable?
 U = 20/100 + 30/145 + 68/150 = 0.86 > 

3(21/3-1) = 0.779
 Inconclusive! Need to try other ways.

25



Embedded Systems Design and Modeling

Example 2 (Cont’d)
 Consider the critical instant of t3, the 

lowest priority task
 t1 and t2 must execute at least once before t3 

can begin executing
 Therefore, completion time of t3 is e1+e2+e3 

= 20+68+30 = 118
 However, t1 is initiated one additional time in 

(0,118)
 Taking this into consideration, completion time 

of t3 = 2*e1+e2+e3 = 2*20+30+68 = 138
 138<p3=150 so the task set is schedulable

26



Embedded Systems Design and Modeling

Dynamic Priority Scheduling 
 Definition: priorities are assigned to 

individual instances of a task
 One of the most common algorithms of 

this class is EDF, or Earliest Deadline First
 Task priorities are inversely proportional to 

absolute deadlines of active jobs
 Optimal among all preemptive dynamic 

scheduling algorithms without precedences
 Can be used for periodic or aperiodic

 If there exists a feasible schedule, then 
schedule given by EDF is also feasible 27



Embedded Systems Design and Modeling

Other Dynamic Schedulings
 Latest Deadline First (LDF):

 Schedules the last task first
 Minimizes the maximum lateness
 Optimal for cases with data dependency
 But doesn’t support task arrivals

 EDF with precedence (EDF*)
 Minimizes the maximum lateness and supports 

task arrivals
 Considers deadline of a task and its successors
 Modified deadline:

28



Embedded Systems Design and Modeling

Example:
Comparison of EDF, LDF, EDF*

29

Assumption:
All execution 
times are 1 Note: task 4 

misses its 
deadline in EDF!


